A PROCESSMODEL APPLICABLE TO SOFTWARE ENGINEERING
AND KNOWLEDGE ENGINEERING’

SilviaT. Acufid, Natalia Juristot T

T Faaultad de Ciencias Forestales, Universidad Nadonal de Santiago el Estero
Argentina
Fax: (54 89 22 259324 1075
E-mail: silvac@unsere.edu.ar

TTT Faaultad de Informética, Universidad Polit éanicade Madrid
Spain
Fax: (34 91 336 74 12
E-mail: natalia@fi.upm.es

Correspondenceto:

Natalia Juristo

Faaultad de Informética, Universidad Politémicade Madrid
Campus de Montegancedo, §/n, Boadilladel Monte
28660Madrid, SPAIN

Phore: (34 1) 336 6922

Fax: (34 1) 336 74 12

E-mail: natalia@fi.upm.es

‘ACKNOWLEDGMENTS:

This paper was prepared and written with the ollaboration o CETTICO (Centre of Computing and
Communicaions Techndogy Transfer, Spain).

" The work reported in this paper was completed duing a sabbatica at the Universidad Polit émicade Madrid.

A PROCESSMODEL APPLICABLE TO SOFTWARE ENGINEERING
AND KNOWL EDGE ENGINEERING

ABSTRACT

Software engineering (SE) and knowledge engineering (KE) develop software systems using
different construction process models. Because of the growing complexity of the problems to be
solved by computers, the conventional systems (CS) and knowledge-based systems (KBS)
software processis at present passing through a period of integration. In this paper, we propose a
software process model applicable to both CS and KBS. The model designed is declarative, that
is, it indicates what is done to build a software system. Its goal is to provide software and
knowledge engineers with a techno-conceptua tool to develop systems comprising both
traditional and knowledge-based software.

K eywor ds: Software process, software engineering, knowledge engineering.

1. INTRODUCTION

The convergence between SE and KE has dowly gestated at the level of methods, techniques,
tools and procedures [1]. However, it is aso important to consider the CS and KBS construction
process. The experimental nature of KE goes hand in hand with a style of software devel opment
best characterized as exploratory, which has not been much studied in traditional SE [2]. It is
conceivable that there may be mutual benefit to be gained from trying to synthesize SE and KE
construction processes. This synthesis should lead to the definition of a software process model
that could be used in both branches of engineering, but, above al, in integrated projects that
contain conventional and knowledge-based software.

The description of the software construction process is a subject studied in SE for many years
now. In 1991, the IEEE published a qualitative, informal and prescriptive model. Since then
many other proposals have emerged [3] [4] [5] [6] [7] seeking to formalize and automate the
construction process.

The situation in KE, however, is quite different. The issue of the technical activities to be
performed to build a KBS was debated in the 80s [8] [9] [10] [11] [12], but KE has never taken
an interest in fully defining all the activities to be performed when building a KBS, including
management activities and support activities.

This paper seeks to propose an informal, qualitative process model. It is an original contribution
especially to KE where there is no specific software process. Although our proposal overlaps

with SE, there ae substantial differences from existing models: it attaches more importance to
the ealy development phases (adding rew adivities to these phases).

This paper presents a quaitative, informal, prescriptive model, whose importancelies in the faa
that it has adopted, integrated and unfied the adivities for constructing CS and for developing
KBS. So, the processmodel propased here can be foll owed for both bulding CS and ceveloping
KBS and is espedally suited for integrated development projeds. If consensus is readied onan
integrated processmodel for SE and KE, amove could be made towards formally modelling and
even automating that process As Riddle said [13], “Developing a processmodel is a process of
gradual acaetion and structuring d information. Done totally logicdly, this is a process of
gradual elaboration o what is known abou the process In atotally logicd approad, one starts
with avery general description and iteratively binds various pieces of the description to make it
more and more spedfic”. This paper addresses the first step spedfied by Ridde, namely, a
general description, asthisisthe first attempt at describing a processthat integrates SE and KE.

2. DISTINCTIONSBETWEEN LIFE CYCLE AND SOFTWARE PROCESS

Originally, the term life g/cle was aways employed. Even thoughthe notion o software process
was present in ead and every software development eff ort, the software processwas nat clealy
identified [14]. As Dftware was gudied in more depth, the software processaauired an identity
in its own right and hes been a subjed of reseach and investigation in recent yeas. Many
software process models have been designed for structuring, describing and prescribing the
processof building a software system, for example [3] [4] [5] [6] [7].

The @ncepts of life g/cle and process are so closely related that confusion dten arises. Our

view isasfollows:

* Life cycle: all the states throughwhich the software evolves. The life g/cle centres on the
product, defining the states throughwhich the product passes from the start of construction
(the initial state is the user need) until the software is in operation (this product state is the
deployed system) and finaly retired (the state is the retired system). The states through
which a future software system passes urtil it reades maturity are dso referred to as
products, as they can be viewed as the intermediate results of the wnstruction projed [15]
[16]. To understand why the life gscle is product oriented, consider the following analogy:.
the human life gscle is infancy, childhood addescence, youth, adulthood old age, that is,
the dhanging states of human beings from when they come into urtil they leave the world.

A life cycle model is an abstrad representation d the software life gycle. In the cae of the
software product, there is no ore life g/cle. A product can pass through dfferent states,
depending onthe spedfic drcumstances of ead projed. For example, if the problem is well

defined and well understood and the user need is practically invariable, a short life cycle,
such as requirements specification, design, software system [17], is likely to be sufficient.
However, when we are up against a poorly defined and poorly understood problem and a
highly volatile user need, we can hardly expect to output a full requirements specification at
the start. In this case, we have to opt for aternative life cycles [18]. For example, a
prototyping life cycle, where the first state will be a prototype; or an incrementa life cycle,
where the first state will be the specification of the system kernel, followed by the kernel
design and finally implementation, then going back to specify the next system increment and
so on. So, there are different life cycles for different project circumstances. Life cycle
models describe or represent these different types of possible life cycles.

* Software process. a series of activities undertaken to develop and maintain software systems.
That is, the software process centres on the construction process rather than on the product(s)
outputted. An organization may define its own manner of producing software. However,
certain activities are common to all software processes. A software process model is an
abstract representation of the software process. Different process models may represent
different points of view. For example, one model may define the agents involved in each
activity, while another may centre on the relation between activities and which products are
interchanged. That is, each model observes, focuses on or gives priority to particular points
of such a complex world as software construction [19] [20]. Furthermore, there are a host of
notations for representing process models, each especially suited for a particular process
approach.

Table 1 summarizes the differences between life cycle and software process, explaining that
these are two different, albeit closely related concept.

Bearing in mind the above definitions, this article centres on the software process and does not
refer to the software life cycle. A common or integral software process model is proposed
providing for the construction of systems composed of traditional and knowledge-based
software.

The paper is organized as follows. After reviewing the common core of software construction in
SE and KE in section 3, the activities which could be common to the construction of each
software type are discussed in more detail in section 4. In section 5, we discuss model
automation and the conclusions of the paper are given in section 6.

3. SE AND KE SOFTWARE PROCESS

In both SE and KE, the software process has a common objective: to build and maintain a
software product that satisfies a need detected by a user. In both SE and KE, the software
process is a modelling process that should unite or connect two different worlds: the problem
world and the computer world. The integra software process model to be used in both
disciplines, SE and KE, seeks to do just this: define a series of activities to be performed to
produce software (whether conventional or knowledge-based).

According to Blum [21], software construction starts with the development of problem models
which are then converted into system models, that is, implemented products (Figure 1). Blum
employs the terms conceptual model and formal model. However, we decided to replace these
terms by problem model and system model, respectively, as the terms originally used by Blum
can lead to confusion if the conceptual models are represented in formal languages.

The problem model describes the user need, the problem to be solved by the future system and
the problem-solving mode. This model is used by engineers to understand the domain, the user,
the problem and its solution. On the other hand, the system model describes the software system,
its structure and composition. This model is used by engineers to prescribe the construction of
the software that is to solve the problem described and satisfy the user need [21]. So, software
construction involves two classes of analysis. The first centres on the problem space (problem
modelling) and the second focuses on the implementation space (system modelling). This view
of software construction isvalid for both KBS and CS construction.

SE has taken the view that needs could be accurately defined (that is, the requirements were
closed) and that problem models were in fact quite close to system models. As we move towards
more open problems (open both in initiadl understanding and to change over time), the gulf
between the expression of the problem and the representation of the system that solvesit widens.
KE, on the other hand, addresses knowledge-dependent problem solving. KE seeks to replicate
the expert problem-solving mechanism in the computer. This approach means that the problem
modelling stage is along process in KBS construction, because it is difficult to elicit the expert
reasoning mechanism. This has led to the creation of expressive representation formalisms for
the system models that can be transformed automatically into an implementation.

Growing software complexity calls for planning, monitoring and control, and evaluation of
development projects. Therefore, SE considers all the management, support and development

processs invaved in the projed, from the identificaion d a neel to the retirement of the
software.

The traditional software process as per |IEEE standard 10741991 is compaosed of four main
processes, eahy gouping a series of adivities that are resporsible for implementing their
asociated gaals [22]. These processes are shown in Table 2. Althoughit has not been formally
defined by any organization a document, the KE software process can be @nsidered to be
compaosed primarily of the procesees $iown in Table 2, as all of these adivities appea in ore
way or another in the most well-known KE development methoddogies[8] [9] [10] [11] [12].

Below we discusswhich o the adivities of SE could be gplied in KE and vice versa. As we
shall see some SE adivities are not explicitly set out in KE, athoughthey are in fad often
aready performed as they are implicit in the KBS building methoddogies. Table 3 shows the
processes for building software developed by the two disciplines. An arrow at the end indicates
that the processis likely to be exportable to the other discipline, whereas an arrow at the start
and at the end means that the processes are omplementary. Similar processs in the two
disciplines are linked by aplain line.

3.1. What SE Software Process Activities Could Be Applied to KE?

The following SE processes have been neither defined na described in KBS development:

identification and seledion d a life g/cle model, projed management, and configuration

management, documentation and training. It is worth considering whether these SE process
adivitieswould be useful in KE.

» The selection of a life cycle model for a projed enables ftware engineas to organize, plan,
suppat, budget, programme and manage asoftware projed, and prescribes what documents
are to be produced. It is reasonable to assume that KBS projeds aso neel to be organized,
planned, suppated, budgeted, programmed and managed, and therefore this process $ioud
be exported to KE. This means that the software life g/cle for the CS construction process
can be useful for the processof building KBS. Obvioudy, as KBS have their own particular
charaderistics, the range of life g/cle models from which to choose to develop this type of
systems would dffer from those used for conventional software. Indeed, traditionaly, the
life oycle models most used in KE are incremental development and prototyping.

* Planning, monitoring and control, and evaluation d development projeds is required in
order to commerciaize KBS, that is, controlled resource @nsumption and performance of
commitments entered into with the austomer is also o interest in this type of projeds.
Therefore, project management adivities soud be caried ou in KBS construction and can
be included in the integral software process

* Moreover, atedhnicdly impeccdle development is nat sufficient in order to guarantee the
successof a KBS, the user neals to be invalved in the processfor the system to be acceted
in its environment and wsed efficiently. Therefore, all of the user-related integral adivities —
documentation, training, evaluation— shoud aso be performed in KE.

» Configuration management and quality management in SE are aresporse to problems that
arise when large systems are built. These problems can be expeded to reaur when KBS pass
from programming-in-the-small to programming-in-the-large [23]. Therefore, these adivities
could improve the results of KBS construction.

The differences are bigger in Development-Oriented Processes, primarily on the following
grounds [1]. Mainly becaise KE solves poaly structured and poaly defined problems, it is
difficult to analyse and even more so to define requirements. In KBS development, problem
understanding dten continues throughou the entire life g/cle. However, there is an increasing
tendency to make distinctions between requirements that canna be spedfied at the start of a
KBS due to poa problem structuring and aher requirements that are typicd of any software
system and can be speafied [24].

On the other hand, as the cmplexity of the problems addressed by SE grows, it moves further
and further away from the myth of closed requirements at the start of development. Therefore,
ore of the isaes that used make SE and KE development processes irreconcilable (that is,
starting the development process with closed requirements) is fading fast. Ancther point
separating SE and KE processes is that there ae far more problem analysis adivities in KE than
in SE. Again this is because the domains to which KE is applied are complex, the problems
addres=ed are poaly structured and the problem-solving processis nat well enough uneérstood
The possble integration d the adivitiesinvolved in the technicd processesis considered below.
* Requirements analysis and specification as used in the traditional software life g/cle ae nat
applicable in KE. Nonetheless as SE comes up against problems with requirements that are
difficult to understand at the start of the projed and change over time, strategies of analysis
are being developed that are doser to those used in KE (discussons held with the user are
being extended and gven more weight, prototypes are being wsed, etc.) and are moving away
from the traditional view of requirements being frozen after their speafication, thus bringing
the view of requirements in KE and SE closer together.
 The fundamental principles of conventional software design (moddarity, abstradion,
refinement, functional independence and information cccultation) are gplied to reduce
complexity, fadlitate implementation and changes, and thus asaure product quality.

Therefore, good asign gudelines must be followed in code design and programming,
whatever the type of code developed [25].

3.2. What KE Software Process Activities Could Be Applied to SE?

Having dscussed what SE software process adivities can be gplied in KE, let us review the
software @nstruction processin KE and dscusswhat adivities could improve the SE software
process

Once the problem has been defined or the neal has been identified, a feasibility study is
caried ou in order to dedde whether the problem can be aldressed by KE. This gedal
feasibility study emerges as a result of the need to ascertain which problems can be
proceseed by KBS and which by classc software. These problems arise becaise KE
tedhniques are dternatives to the dassca approad to systems development, and a dedsion
of this type neals to be made a the start of projed development to ensure that there is
agreament between the team of engineas and the austomer. In an integral software process
that can be used by software and knawledge engineeas, after exploring the domain and
gaining an understanding d the problem paosed, it is esential to include both the cst/benefit
analysis of aternative gproadies to a particular projed and adivities that make up the
spedal feasbility study in order to dedde on the type of software solution required by the
problem.

Of the processes that make up the KBS construction process the knowledge acquisition and
conceptualization processes have no explicit equivalent in SE. Acquistion and
conceptudi zaion adivities are performed because of the daraderistics of the problems
proceseed by KE: complex domains, nontalgorithmic and nonexplicit problem-solving
processes. Compared with a traditional software enginea, a knowledge enginee neels a lot
more time to understand the domain and the expert problem-solving process As the expert
has internalized this process and it is not explicit, elicitation is a demanding and dfficult
task. Additionally, once the knowledge enginee gains an insight into the expert’s picture of
the world and the pieces gart to fit together, he/she must start to conceptualize d of the
knowledge being €li cited and make it explicit in a problem model.

In view of the increasing complexity of the problems addressed by SE, there is a need to go
deeoer into damain and poblem exploration and comprehension and, as a result, the
software enginea must interad closely with the airrent problem solver to understand the
problem-solving process and the gplicaion environment. System analysis requires intense
communicaion ketween the austomer and the analyst. The aistomer must understand the
system objedives and ke ale to explain them clealy. The analyst must know what questions
to ask, what adviceto gve and what investigations to undertake; in short, which is the best

way of extrading information. If communicaion kresks down, the success of the entire
projed isjeopardized. Althoughthe domains traditionally addressed by SE are better known,
the problems are eaer to understand and the problem-solving processes are often explicit
and knawvn algorithms, now that SE is faced with the dallenge of solving more cmmplex,
albeit algorithmic, problems, the time spent interading with the user as oppcsed to with the
computer will grow. Indeed, the adivity known as requirements elicitation is beaming
increasingly important within the analysis phase. So, in order to adhieve adion efficiency,
we have to resort to informatior/knowledge aquisition and analysis adivities that elicit and
conceptudize the problem-solving knawvledge and extrad and model knowledge of the
domain and the information, skill s, behaviour, tasks and adions of the users. While no expert
isinvaved in CS, the user from whom the information is extraded, who is highly skilled in
performing hs/her job, is redly an expert in a broad sense. Although Ie&/she does not use
expertise, he/she has ©me spedfic knowledge a to higher job in the organizaion and
properly trained to perform the job efficiently. Experts and spedalized users can be grouped
under the term solvers.

The trend in SE is towards the need to solve poaly spedfied, increasingly complex
problems with shallow knowledge of the problem domain. SE will be dominated by the
following trends. open and dyramic requirements, reuse, integration and dverse
computational models [26] [27] [21].

» Formalization and implementation adivities are particular to KBS as they are resporsible for
representing the problem model outputted by conceptualization wsing formalisms proper to
KE. It appeas, therefore, that these adivities canna be exported to SE, althoughthey shoud
be addressed bythe integral software processin some manner.

4. PROPOSAL FOR AN INTEGRAL SE AND KE SOFTWARE PROCESS

Based onthe traditional SE processes [22] and the processes defined in Table 3 for knowledge-
based software wnstruction, an integral software process has been designed whose objedive is
to assst in the development of software in bah SE and KE. An owerall description d the
processis given below, detailing the subprocesses and aigina adivities or adivities considered
to be of more interest for the purposes of the integration sought after. The IEEE eleds to
represent the software process as a decomposition o the eitire process (outside box) into
subproceses (projed management, development-oriented processes and integra software
suppat) and further into subsubprocesses. That is, the software process as represented by the
IEEE, isthe decomposition d the entire software processinto smpler processes.

As mentioned earlier, all software is an automated response to a real-world need; there is a
process that transforms the need into a computerized solution; software development involves a
series of activities that start, plan, manage and support the project and that develop and evaluate
a series of products ending with the software system. Therefore, the common software process
needs a subprocess that provides for the selection of a software life cycle model (SLCM), which
will become its axis, and another three subprocesses. one that manages the project, another that
models the products and a third that assists with modelling. We have named these subprocesses
respectively: Software Life Cycle Model Process, Project Management Processes, Software
Modelling Processes and Integral Project Support Processes.

In other words, the four basic processes in the |IEEE standard 1074-1991 are aso valid for KE.
The first two processes keep the names allocated in the IEEE standard, as the name of the
processes exactly matches the activities to be performed whether in SE or in KE or joint
development. The latter two processes proposed by the IEEE have been renamed. Figure 3
shows the new software process proposed, which meets the needs for producing software
systems that process data, information and knowledge.

The processes that are referred to as Development-Oriented Processes in the above-mentioned
standard now form a group named Software Modelling Processes in the SE and KE process.
This name was chosen because their goal is achieved and their job performed by advancing from
one model to another, where program code is just a model of the detailed design model and
system operating documentation is just a model of system and user behaviour, etc. The
Modelling Processes are divided into Exploration Processes, Problem Understanding Processes,
System Construction Processes and Utilization Processes that correspond to the exploratory,
problem, system and utilization models, respectively. Thus, exploratory models are created for
problem formulation and feasbility determination; problem models for need definition,
requirements specification and knowledge determination; system models for design and
implementation representation, and utilization models for software installation, use, retirement
and maintenance.

The processes that assist in Software Modelling Processes and are necessary for successfully
completing the activities in the software project are referred to as Integral Project Support
Processes. integral because they are applied throughout the entire software construction process
and to all of the aspects involved in each subprocess and support because they support reliable
software construction (Verification and Validation Process, Configuration Management Process)
and ensure that it is used to full capacity (Training Process, Documentation Process).
Additionally, the product should be developed in constant interaction with users (Information

and Knowledge Acquisition Process. Integra Suppat Processes are an esentia aid throughou
the entire processof quality software construction. They are adivated by Projed Management
Processes and Software Modelling Processes and by the Integral Suppat Processes themselves.
They are divided into Quality Protedion Processes, including Verificaion and Validation and
Configuration Processes, Tedhndogy Transfer Processes, including Documentation and Training
Processes, and, finally, the Information and Knowledge Acquisition Process

Asthe adivity input and ouput definition is complete and robust, certain processes gedfied by
IEEE standard 10741991 tave been exported to the proposed model, although some dange
name. Other processes are given the same name & in the standard bu include new adivities.
Three processes are ompletely new as compared with the standard: the Domain Study Process
and the Knowledge Analysis Process within the Software Modelling Proceses and the
Information and Knowledge Acquisition Processwithin the Integral Projed Suppat Processes.

So, the main dfferences from |IEEE standard 10741991 are the Software Modelling Processes
and the Integra Projed Suppat Processes as sown in figures 5 and 6 Below, we review these
two processes howing hav the processes and adivities are defined so asto be gplicable to bah
classcd software and knavledge-based software devel opment.

4.1. Software Modelling Processes

The development of software is basicdly a modelling process invaving the construction d a
series of intermediate models at different levels of abstradion. Modelling enables the
software/lknowledge enginee to handle the complexity of a software system mainly using the
strategy of “divide and conquer”.

As $own in Figure 1, the eseential and charaderistic job o the modelling processes can be said
to beto buld dfferent types of models: descriptive (for the problem model) and prescriptive (for
the system model). The problem model corresponds to the Problem Understanding Processes and
the system modd to the System Construction Processes. Each model undergoes successve
reviews until it resembles the red thing as acceptably as possble. In the cae of the problem
model, the real thing is the user domain, nead, problem and solution; in the cae of the system
model, thereal thing is the system to be produced.

The processes of Exploration, Problem Understanding, System Construction and Utili z&tion, into
which the Software Modelling Processes and their respedive subprocesses are divided, are
discussed below. Figure 5 shows these processes in the proposed model as compared with the
processes defined in IEEE standard 10741991

10

4.1.1. Exploration processes

These comprise the study, analysisand dagnasis of the situation, which provides for appropriate
problem reaogntion and formulation, prease delimitation and definition o the need for the
computerized solution and determination d the feasibility of the system to be developed.

Generaly, a problem arises when somebody percaves a difficulty or thinks the arrent state of
affairs coud be improved. When a problem has been deteded, the next step in problem
identification will be to formulate or conceptuali ze the problem adequately. Once the aspeds of
the problem that is to be solved have been predasely defined and they have been preasely and
clealy described, that is, once the problem has been formulated, problem analysis continues in
order to identify the idea or neel for the system to be developed, whether this is a new
applicaion a a dange of al or part of an existing applicaion, and to formulate potential
solutions, considering their limitations and benefits.

Accordingly, Exploration Processes invalve two processs: @) the Domain Study Process which
is required in complex software systems development and b the Feasibility Study Process that
corresponds to the Concept Exploration Processof | EEE standard 10741991, and also analyses
how well the probdlem domain fits in with KE methods. This gudy will output the type of
solution: buy, reuse, develop algorithmic software, develop knovledge-based software or others.

4.1.1.1. DOMAIN STUDY PROCESS

This process geks to gain a perspedive and a mental comprehension d a given phenomenonin
the red world. It usualy starts with the enginea familiarizing hm/herself with the problem that
isto be studied, which includes processng the bibliography onthe matter, spedalist and expert
opinions, personal experiences, etc., and this is dore by means of the Information and
Knowledge Acquisition Process The engineg neeals to understand the problem domain and the
genera termindogy wed in order to form a preliminary or mental map o the problem domain
and aqquire the vocabulary needed to dalogue with the user.

Once this has been dore, the apeds of the problem to be solved are defined as acarately and
described as clealy as possble. Throughou this process an effort must be made to adiieve
maximum conciseness clarity and predsion as regards the problem studied, considering its
objedives, the scope of the problem domain and the relations between the subproblems of which
it iscomposed. If the software isto be intelli gent, this processis aso ariented towards getting an
overal understanding d the human expert’s task. It seeks to understand and make explicit both
domain and expert knowledge.

11

The following must be identified and analysed in the Domain Study Process @) the goals of the
user's organizaion; b) the organizaion's problems; c) functions of the future solution; d)
solution environment; €) tasks requiring expert knowledge, andf) user tasks, in order to establish
the aurrent status of the organization and define the domain o the problem to be solved. This
processoutputs: (a) a Current Status Model that includes a list of user organizaion ohedives
with the arrrent status and desired priority, a description d the organizaion's problems, the
current sequence of operations performed, identification d system users and their requirements,
how experienced the solver and wser is and hig/her role, and (b) a Problem Domain Model that
includes the main concepts and relations between these mncepts, functionality and spedfication
of the operating environment, showing the relations between the problem domain and its
environment (users, other software, physicd systems, etc.) and what data, information o
knowledge will be interchanged.

The importance of the Domain Study is diredly propational to the mmplexity of the problems
processed.

4.1.1.2. FEASIBILITY STUDY PROCESS

Once the problem has been studied and defined, this processtriggers the modelli ng eff ort with
theidentificaion d an ideaor need for a system to be developed, whether it is a new applicaion
or a dhange of al or part of an existing application. It includes the identificaion d an ideaor
need, the formulation d potential solutions, their evaluation (feasibility study) and refinement at
the system level [22]. If al or part of the dternative to be developed is a KBS, it shoud be
determined beforehand whether the solution is feasible gplying KE techniques and methods
[28] [29]. Once system constraints have been established, the Statement of Need for the system
to be developed is generated, which fires the Problem Understanding Processes and fedds the
Projed Management Processes. The Statement of Need is the document that constitutes the basis
of al |ater engineaing work.

The Feasibility Study Process describes the need and the solution to be implemented (software
solution) in the Statement of Need. It includes descriptions of the gplicaion damain, neels and
expedations €leded, the daraderistics of the software and its impad on the organizion. It is
important becaise it supgies timely and suitable information to the management levels for
making the dedsionto start software solution construction.

12

4.1.2. Problem under standing processes

Problem understanding processes comprise conceptua analysis and modelling that provide for
problem definition, an understanding of the relevant knowledge relations and problem-solving
processes, and specification of software requirements.

They involve the Environment Analysis, Knowledge Analysis and Requirements Analysis
Processes that strongly interact with the Information and Knowledge Acquisition Process in
order to get the necessary and relevant information and knowledge about the environment,
knowledge and requirements models, respectively. The Knowledge Analysis Process constitutes
an essential process in KBS construction. The Environment Analysis Process and the
Requirements Analysis Process are based on the System Allocation Process and the
Requirements Process, respectively, in IEEE standard 1074-1991. However, some changes need
to be made, especialy to the Requirements Process, to account for the fact that not al the
requirements can be defined and frozen at the start of the KE project. As mentioned earlier, as
classic software applications become more complex and move into new domains, this need to
process open requirements is increasing in SE. As the integral software process proposed here
does not determine any order for process performance, the engineer will navigate from one of
the three conceptualization processes to another, where one process will support the others and
none of the processes will be concluded until all three are complete, producing: adequate
requirements, an adequate knowledge model and an adequate architecture.

The three conceptual models (Environment, Knowledge and Requirements) describe how the
solvers, users and software and knowledge engineers view the environment, the relations
between relevant concepts and software product requirements. It is important for all of the
viewpoints to converge in a single representation of the system. This representation shows what
the software isto do and when and how it isto do it and what knowledge it isto use.

At the end of these processes, we will get a description of the relationships between the software
and its environment, a description of domain knowledge, a list of all the selected needs and
expectations and a list of the software product characteristics.

4.1.2.1. ENVIRONMENT ANALY SIS PROCESS
This process is performed to set the software in its external environment. It is especially valid
when the software is to be embedded in abigger system.

The Statement of Need is the basis for environment analysis, identifying the inputs, required
outputs and full system functions. A Functional Description of the System and the System

13

Architecture are spedfied. This processof environment definition concludes with the Functional
Software Requirements Specification, Functional Hardware Requirements Specification and
System I nterface Specification [22].

The most important functions of the system to be built are spedfied in the software system
requirements in order to define what the software isto doto adhieve eab olgedive and make it
useful for the system end wsers. These functions are described in general terms and refined
throughou the projed until exad functionality is obtained. If the software to be built has an
intelligent comporent, the outputs of this process will be defined at a higher level than for
systems that have no such comporent. However, as this process interads with the Knowledge
Analysis Process these outputs will be refined and, ultimately, it will be possble to spedfy
system requirements, before moving onto the System Construction Processes.

4.1.2.2. KNOWLEDGE ANALY SIS RROCESS

This processis designed to arganize dl of the concepts, relations, inferences, strategies, tasks,
etc., that are dicited from the Information and Knowledge Acquisition Process in order to
understand, adapt and later model the domain and problem solver behaviour. Accordingly, the
Knowledge Analysis Process &eks to define dl the existing concepts, attributes and functions,
which generates a static and dyramic knowledge structure, enabling the enginee to represent
his’her understanding d solver knowledge and the solver to identify conceptua errors on the
part of the engineq; this dructureisreferred to as aknowledge model. Thisinvaves a two-stage
processof structuring the knowledge aquired: Analysis and Synthesis. The type of adivity to be
performed as part of this processis outlined below. In order to be & generic as possble, we will
refer to the models obtained as the static model (or structural model) and the dynamic model (or
functional model). These generic names can be spedfied, depending onthe gproad taken to
buil ding the system, as procedure-oriented, objed-oriented, reasoning-oriented, etc.

During the knowledge analysis adivity, the knowledge obtained duing knavledge aquistionis

analysed a threelevels:

1. Strategic Knowledge is knowledge of the steps of the task performed by the expert/solver

and the software flow control. It answers the question “what are the steps to solve the
problem?”
To condwct this analysis, the sequence of adions performed by the solver that are to be
exeauted by the system are first identified. The substeps are then identified. Finaly, when
the subtasks can be broken down nofurther, they are defined. All this ioud be refleded in
a representation flow charts, hierarchicd trees, etc.— that describes the problem-solving
process

14

2.

Tactical Knowledge is a lower level of knowledge. It determines how to perform ead task
identified in the strategic knowledge. It answers the question “how is ead step performed?”
Or “what hasto be dorein ead step?”

The analysis of this knowledge must produce detailed definitions of ead step exeauted to
solve the problem; for this purpose, we must start by identifying all the data needed in eath
step. Then the individua steps are defined. These shoud map ou the overal problem-
solving structure, such as: reading conclusions and readions to new information. Diff erent
representations can be used to represent this knowledge, such as. dedsion tables,
pseudaules, dedsion trees, formulag etc. If the system has no intelligent comporent,
tadicd knowledge may correspondto the dgorithm of ead unt or modue.

Factual Knowledge: This is what the system will know abou the domain, and information
that will be obtained by the system abou the cae in question when performing the task, that
i, the fads taken as a starting-point by the system and the fads arrived at by the system
during and after exeaution.

To conduct this analysis, the information colleded abou ead attribute has to be organized
within a written definition d the dtribute, then the atributes that are important for the
application are dasdfied. Later, the fads abou the gplicaion area relating concepts,
processes or entities that are independent of ead particular case, are organized and, finaly,
the interrelations between the mncepts and aher entiti es identified are defined.

For knowledge synthesis, the @owve results are used to define two models: the static (or
structural) model and the dynamic (or functional) model.

Satic Model: This model will contain damain information: concepts, their definitions,
relations between concepts, attributes, their values and the tasks or adivities in which eat
concept participates.

Dynamic Model: This model will reaord the tasks to be performed by the system, the inpus
that adivate these tasks, the results obtained and task exeaution control.

In sum, the enginea can be said to have @wncluded damain analysis when he/she has defined the
domain concepts, relations, attributes, values and functions. It is then that he/she understands the
problem and haw it is ©lved. Therefore, the enginee now understands what the software system
isto doand haw it isto doit, and can, therefore, go ahead with its construction, passng through
the system construction processes.

4.1.2.3. REQUIREMENTS ANALY SIS FROCESS
This process includes iterative adivities targeting the development of software requirements
(functional, performance and interfacg which started in the Environment Analysis Process

15

Software Requirements Specification (SRS). It is the document outputted at the end of this
process. Whereas the Environment Analysis Process centres on the description of the domain
(what there is in the domain and how domain tasks are performed), Requirements Analysis
focuses on the user (what users expect of the system, what they want it to do, etc.). Note that
these are two complementary views, and both are necessary in the construction of any software
system type.

In the case of systems with open requirements, such as KBS, the a priori determination of
functional requirements is confined to the specification of minimum high-level functional
requirements. These are gradually refined during the requirements analysis process considering
the conceptualizations output in the Knowledge Analysis Processes and even in the Preliminary
Design Process, until an exact and clear set of functional requirements, which provide for system
validation in line with the acceptability criteriainvolved, is agreed a posteriori. This processis
semi-open, perfectible and iterative as is characteristic of software requirements formulation and
evauation.

4.1.3. System construction processes

System Construction Processes seek to represent the intuitive elements addressed in the Problem
Understanding Processes by means of formal languages. The objective is to develop a system
model that corresponds with the problem model. They involve the Design Process, the
Implementation Process and Integration Process. Faced with the problem world (user domain)
and the computer world, the System Construction Processes are where the engineer considers the
computer (implementation domain) for the first time in software development. The Design
Process has the same name as in |IEEE standard 1074-1991, but includes additional activities
essential for KBS construction, such as: the selection of formalisms suited for representing
knowledge and inference techniques appropriate for reasoning with that knowledge. The
Integration Process and |mplementation Process are equivalent to the Implementation Process set
out in the standard, except that, in KBS development, they output the knowledge base code and
the inference engine and must also load the knowledge base, which involves transferring the
formalized knowledge to the knowledge base structure. The increasing complexity of software
systems means that component integration is becoming more important. This is why system
integration is considered as a separate activity from implementation.

In the System Construction Processes, we move from a qualitative to a quantitative model that
represents system structure and behaviour. The system models, which determine the criteria of
correctness, are built as part of these processes and the models are programmed, thus producing
a software model that must be correct with respect to the system model.

16

The objedives of the System Construction Processs are to produce adetalled system model
(Design Procesg and trandate that representation into an implementation in a programming
language (Implementation Process and Integration Procesg. The process by which the detail ed
model is developed combines: intuition and criteria based on experience in bulding similar
systems, a set of principles and/or heuristics that guide the manner in which the model is
developed, a set of criteriafor ascertaining quality and a processof iteration that finaly leads to
arepresentation d the final design.

For KBS, the output of this adivity is the logicd representation d the solver's knowledge
depending on implementation isses, that is, that the knowledge model (defined in the
Knowledge Analysis Procesy is expressed formally within the framework suggested by the tod
or by the programming language.

4.1.4. Utilization processes

These ae processes that are to be performed to instal, operate, suppat, maintain and retire a
software product. The enginee moves from building system models that conclude with the
software to constructing uili zation models; that is, from adivities that produce the software to
adivities that provide for its use.

Accordingly, the Utilization Process invaves the Installation and Acceptance Process the
Operation and Suppat Process the Retirement Process and the Maintenance Process These
processs are euivalent to the processes defined in IEEE standard 10741991, as they have to be
performed in KE aswell.

4.2. Integral Project Support Processes

Figure 6 shows the subprocesses making up the Integral Projed Suppat Processes of the
proposed model, which are equivalent to IEEE Integral Processes, except for the manner in
which they are divided and the aldition d a new and es®ntial process Information and
Knowledge Acquisition Process As these suppat processs include fundamenta adivities for
ensuring that the system built isreliable and that it is developed and wsed to full capadty andin
close interadion with users and solvers, they are divided into: Quality Protedion Processes
(Verification and Validation Processand Configuration Procesy, Tedindogy Transfer Processes
(Training Processand Documentation Procesg and the Information and Knowledge Acquisition
Process and constitute the basis for achieving higher end wser satisfadion and owerall software
product and processquality.

17

4.2.1. Quality protection processes

Software quality assurance is a “protedive adivity” that is applied to eath software process
adivity. Software quality assurance ©mbines procedures for the dfedive gplicdion d
methods and todls, formal technicd reviews, testing tedhniques and strategies, changesin control
procedures, standard enforcement procedures and measurement and information mechanisms.
So, the Verificaion and Validation Processand the Configuration Process are performed onthe
basis of software quality and constitute the Quality Protedion Processs. The two processs are
defined in the IEEE standard [22]. The Verificaion and Validation Process is extended to
include techniques that can be used onKBS, providing for verification d the lexicd, logicd and
contextual coherence of the knowledge base and KBS validation using test cases and parall e
testing.

4.2.2. Technology transfer processes

Any techndogicd system requires siitable transfer for proper deployment and routine use.
Indedd, it is not the same thing for the builders to use the system as it is for the users to use the
system. The only way of eliminating these differences is by meticulous techndogy transfer,
mainly including system documentation and user training. So, the Documentation and Training
Processes are resporsible for tedindogy transfer, thus providing for proper insertion d the
software into the organizaion. Both proceses are defined in the IEEE standard [22].
Tedndogy transfer includes many more processs than just documentation and training [30].
Software developers must be @nvinced that they are dso resporsible for these transfer
adivities. When this resporsibility is assumed, other adivities ouglt perhaps to be included in
the Tedhndogy Transfer Processes.

4.2.3. Information and knowledge acquisition process

Thisisthe processof gathering information from several sourcesto buld a software system. The
word information is considered in its broadest sense, that is, data, information as such and
knowledge. This processis taken from KBS software processes, where it is as important as
analysis and design and invalves interadion with the expert. This task most certainly came to
take such an important placein KBS development because of the highly complex problems
addressd by KE. This complexity made it very difficult for engineas to uncerstand the domain
and, espedally, the expert reasoning and problem-solving process As the problems processed by
SE are beaoming more complex and it is moving into new domains, we thouglt it advisable to
export this adivity from KE to SE.

18

The Information and Knowledge Acquisition Process is mainly invoked by the Software
Modelli ng Processes (Exploration, Problem Understanding, System Construction and Utili zaion
Processes) and takes placein perallel, suppying ead processwith the information as required.
This processis planned and performed to aaqquire the information and knavledge required to
understand the domain, the problem and the problem-solving process when bulding software
systems. This processinvolves al the adivities that plan, exeaute and evauate the aguisition
sessons and gather, analyse and classfy the information and knavledge extraded.

Eadh sessonis performed acoording to any o the existing techniques [28] [31]. The information
and knovledge obtained are dassfied as terms, concepts, relations, procedures, algorithms,
inferences, etc., in the Acquisition Report which feeds the Modelling Processthat invoked this
process

Obvioudly, iterativenessis an intrinsic feaure of this process as £ssons have to be repeaed
over again urtil asatisfadory level of informationis gained.

5. CONCLUSIONS

The paths open to SE and KE leal towards joint development, enabling the construction o
systems that include traditional and knawvledge-based software. Having readed this point,
software developers will need a software processmodel for rational construction d software that
meds the neals of open requirements and complex and dyramic software. The Integral Software
Process Model proposed is a potential solution to this problem, as the different processes
comprising the ammmon software processdiscussed here ae valid for both types of software.

A descriptive process model has been presented as a first step towards a prescriptive and
automated processmodel. To achieve the seamndstep it is necessary to read general agreement
abou which subprocesses and adiviti es make up a software processthat describes CS and KBS
construction. This was the objedive of our paper. If software is developed acwording to this
model, the process will be different because it includes new adivities. For example, a new
subprocess emerges, cdled information acquisition and conceptuali zaion, which, apart from a
user requirements gedficaion, outputs problem models of the user’s problem and haw the user
solves it (asis dore in KE). With regard to KE, new processes emerge for KBS development,
such as management processs, life g/cle seledion, configuration management, etc., adivities
not contained in any of the methoddogies that describe KBS construction.

19

The type of system that best fits our process are integrated or mixed systems that have traditional
and knowledge-based subsystems. Using this model, it will no longer be necessary to employ
different process models for CS and KBS, which made them difficult to manage.

With the common software process, which provides for modelling complex software in relation
to its dynamic environment, software and knowledge engineers will construct conventional
systems and knowledge-based systems in an integral manner. The common process considers al
the processes involved in the software life cycle, from problem identification through to
software retirement in the framework of software management, monitoring and control,
knowledge acquisition and evaluation. It contributes three original processes as compared with
|IEEE standard 1074-1991: the Domain Study Process, the Knowledge Anaysis Process and the
Information and Knowledge Acquisition Process.

The Integra Software Process Model addresses SE and KE convergence in terms of integra
software development processes and activities at the level of conceptual justification and it gives
conventional and knowledge-based system developers a conceptual tool to help them to produce
quality software. The model proposed is a useful tool for modelling the construction of flexible
and reusable, evolutionary software systems that process data, information and knowledge,
which facilitates the development of systems combining intelligent software with traditional
software. This paper ushers in a new form of dialogue between software and knowledge
engineers, experts and users which will provide for progress in the implementation of individual
integral and interdisciplinary projects as aresult of the interest and experience shared.

The integral software model developed provides a visualization of the structure of the common
software process, a comparison of the hypotheses formulated in the software construction
models by the software and knowledge engineer, a deepening of the knowledge on which
activities are difficult to perform in the construction process and an explanation of the activity of
complex software problem solving. Studies that fully describe the process activities and their
logical relations need to be conducted, SE methods and techniques need to be adapted for KE
and KE methods and techniques for SE, and the proposed model needs to be validated in order
to improve model capabilities.

20

REFERENCES

1

F. Alonso, N. Juristo and J. Pazos, “Trends in life-cycle models for SE and KE: proposal for
a spiral-conicd life-cycle model approad”, Int. J. Software Engineering and Knowledge
Engineering. 5, 3 (1995 445465

L. Ford, “Artificial intelligence and software engineeing: a tutorial introduction to their
relationship”, Artificial Intelligence Review. 1, 4 (1987) 255273

3. J. Lonchamp, K. Bendi, J. C. Derniame and C. Godart. “Towards asssted software

engineaing environments’, Information and Software Technology. 33, 8 (October 1991
581-593

4. W. Deters and V. Gruhn “Software process analysis based on FUNSOFT nets’, Systems

Analysis Modelling Smulation. 8, 4-5 (1991 315325

5. M. H. Penedo and C. Shu. “Acquiring experiences with the modelli ng and implementation o

[02]

the projea life-cycle process the PMDB work”, Soft. Eng. J. 6, 5 (September 1991 259
274

. M. I. Kéellner. “ Software processmodelli ng suppat for management planning and control”, in

Proc. 1st Int. Conf. Software Process. Redondo Bead, California, USA (21-26 October
1997) 8-28.

7. S. C. Bandindlli, A. Fuggetta and C. Ghezz. “Software process model evolution in the

10.

11

12,

13.

14.
15

SPADE environment”, |EEE Trans. Soft. Eng. 19, 12 (Decenber 1993 11281144

M. A. Carrico, J. E. Girard and J. P. Jones, Building Knowledge Systems. Developing &
Managing Rule-based Applications, McGraw-Hill, 1989

B. J. Widlinga, A. Th. Schrieber and P. de Gred, KADS Synthesis. Document Y 3, Projed
ESPRIT KAD S, Amsterdam University, 1989

R. Alberico and M. Micco, Expert Systems for Reference and Information Retrieval, Gred
Britain: Mockler Corporation, 1990

P. Harmon and B. Sawyer, Creating Expert Systems for Business and Industry, New York,
NY: JohnWiley & Sons, 199Q

J. S. Edwards, Building Knowledge-based Systems, Towards a Methodology, Biddes, Ltd.,
1991

W. E. Ridde, Fundamental Process Modeling Concepts, Software Engineaing Ingtitute,
Carnegie Mélon University, Pittsburgh, PA, 1996

B. I. Blum, Software Engineering: A holistic view,, Oxford University Press 1992

W. Scacdi, “Models of software evolution: life g/cle and pocess’, SEI Curriculum
Modules, SEI-CM-10-1.0, Carnegie Méllon University, 1987.

21

16.

17.

18.

19.

20.

21

22.
23.

24

25.

26.
27.

28.

20.

30.

3L

M. Dowson, B. Ngmeh and W. Ridde, Fundamental Software Process Concepts, in Proc.
First European Workshop on Stiware ProcessModeling, AICA Press 1991

W. W. Royce, Managng the Devdopment of Large Sdtware Systems, IEEE WESCON,
197Q 1-9. Currently avail able in Procealings ICESE9, IEEE/ACM, New York, 1987

B. W. Boehm, “A Spira Model of Software Development and Enhancement”, Computer.
(May 1988 61-76.

M. Dowson, B. Ngmeh and W. Ridde, Concepts for Process Definition and Suppat, in
Proc. Sxth Intern. Sdtware Process Workshop, Rock Mourtain Inst. of Software
Engineaing, October 1990

P. Feller and W. Humphrey, Software Process Development and Enadment: Concepts and
Definitions, Proc. Second Intern. Conf. on the Software Process Rock Mourtain Inst. of
Software Engineaing, February 1993

B. 1. Blum, Beyond Programning: To a rew era o design, New York, Oxford University
Press 1996

IEEE Sandad for Devdoping Sdtware Life Cyde Processes, |IEEE Standard 10741991
M. Shaw, “Prospeds for an engineging dscipline of software”, IEEE Sdtware, 7, 6
(November, 1990 pp. 15-24.

J. Rushby, “Quality Measures and asaurance for Al software”, NASA Contractor Report
4187 1988

R. S. Pressman, Sdtware Engineaing: A Practitioner’s Approach, 3rd Ed., McGraw-Hill ,
New York, 1992

F. P. Brooks, “No Silver Bullet”, Computer. 20, 4 (1987 10-19.

L. A., Belady, “From SE to KE: The Shape of the Software Industry in the 1990s’,
Internationd Journal of Sdtware Engineaing andKnowledge Engineaing. 1 (1991 1-8.
A. Gémez N. Juristo, C. Montes and J. Pazos, Ingenieria de Conccimiento: Disefio y
Construcdon de Sstemas Expertos, CEURA, Madrid, Spain, 1997.

J. Slagle and M. Wick, “A Method of Evaluating Candidate Expert System Applicaions, Al
Magazine (Winter 1988 44-53.

P. Fowler, I. Garcia Martin, N. Juristo, L. Levin and J. L. Morant, “An Expert System In
the Domain o Software Techndogy Transfer”, Expert Systems with Applications, 12, 3
(April, 1997, 275300

A. C. Scott, J. E. Clayton and E. L. Gibson, A Practical Guide to Knowledge Acquisition,
Addison-Wedey, Realing, MA, 1991

22

Figure 1. Essential Software Construction Process
Figure 2. Software Engineering and Knowledge Engineering Process Model
Figure 3. Prinicipal Software Processes Models

Figure 4. Models of Processes Simultaneous to Prinicpal Software Processes

23

Impact of Solution on Need

Problem

or
Need

Application
Domain

>

—>

Problem

dels
Mo :

System
Models

>

Implementation

Solution
or

Domaig;

Figure 1

24

Slgﬁmm.Le_>

Zainbi4

SS300.d UoisINboy
abpajmouy|
® Uolewoju|

ss300.d 90014
BurelL uoejusWNooQ

Sa5S900.d Jojsuel) ABojouyae |

SS900.d SS900.1d

Jewsfeue N uolepieA

uoneInByuod w
2/eM1J0S UOIROJIBA

S355300.d Uonae1oid Alend

S3SS300Ud 1H0ddNS
FHVMLIHOS TVHOTLNI

SS3001d
Wewebeue |\
Aiend
2/eMyos

$SS300.d
S5900.d uopew s

jonuod » BuLed

Bunoluo N ‘woenu|
19004d eloxg

S3SS300dd INFNTDOVYNVIN
103r0dd

SS300.1d SS300.1d
weuRIRy SoUeUBIUR N
$S900.d 1oddng SS300.d
» uoiredo 80Ue1de0Y 7R UOIR|[eIsU|
S985300.d Uoiezijnn
SSS00.d SS300.d
uorelbe| uonelewedw | | SS900.d ubsaa
S355300.1d UOI0NIISU0) WelsAS
SS900.1d ss900.4d ss900.4d
ssApeuy ssApeuy ssApeuy
Sjuewe.inbey abpa|mou Y JUSWUOJIAUT
S355300.1d Bulpuesiepun we|go.d
SS300.d SS900.d
Apnis Aitjiisesd Apnis urewoq

$355800.d Uoneso(dxg

S3SS3004d

ONITIHAON FHVMIHOS

SS3004d
T3dON
FT0AD 411 IHVMLILOS

25

SOFTWARE MODELLING

PROCESSES
Feasibility Study
Process
Environment Requirements
Anaysis
Process

26

ERROR: st ackunderfl ow
OFFENDI NG COWAND: rlineto

STACK:

